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This paper describes the development of a calculation procedure for
fluid flow in arbitrary domains. This method is based on ths finite-
volume formulation in the arbitrary Lagrangian-Eulerian (ALE) grid.
Coordinate transformation is not necessary and the physical geometri-
cal quantities are directly applied. The derivations are obtained by the
divergence theorem, and the diffusion terms in the governing equations
on the control surfaces are represemted by a two-point related gradient
expression. A split velocity concept is employed to link the interferences
of adjacent pressure nodes and eliminate the pressure wiggle probiem.
The total mass flux is kept unchanged in the split velocity field, as in the
ariginal velocity field determined from the momentum equations, which
implies the consistency of the pressure correction process. Three typical
test problems of flow in a gradual expansion duct, flow in a double bent
channel, and natural convection between concentric and eccentric
anmuli have been calculated 10 indicate the feasibility and performances
of the present formulation. Results showed that this method i5 a robust
and efficient tool to determine the fluid flow characteristic and heat
transfer process for problems with complicated boundaries. € 1994
Academic Press, Inc.

1. INTRODUCTION

The orthogeonal grid systemm  applied in complex
geometries to numerically solve the fluid flow problems will,
in general, require special interpolation of boundary condi-
tions due to the inconsistency of physical boundary and
computational grid surface. This interpolation may induce
computational ¢rrors and yield inaccurate prediction of
the fluid flow. Therefore, the body-fitted coordinates or
unstructured grid methods are adopted to avoid the com-
plicated assignment of boundary conditions. In body-fitted
coordinates, three types of grid system according to their
relative computational positions of pressure and velocity
variables are usually emploved [17]. They are the staggered
grid, the collocated grid, and the arbitrary Lagrangian-
Lulerian (ALE) grid. In the stapgered grid [2], pressure is
defined at the computational grid node and  veloeity
components are located midway between two adjacent
pressure points. The staggered grid is proven to be quite
robust and efficient in orthogonal grid computations. No
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further adjustment for pressure correction equation is
needed, since the mass flux in the continuity equation
derived from the discretized momentum equations
reasonably corresponds to the pressure gradient across the
contrel surface. Special treatments required by the momen-
tum interpolation in the collocated grid [3] and required
by the split velocity concept [4]) in the ALE grid must be
adopted to eliminate the checkerboard pressure field.
However, in the case of the body-fitted coordinates, dif-
ferent computational locations for velocity components in
the staggered grid may impose additional disadvantages, no
matier which components of the velocily vector are chosen
to be the dependent variables. If the Cartesian velocity com-
ponents are selected to be the dependent variables, there
may exist a pressure oscillation field when the grid lines
rotate by 90° [5] and the mass flux across the control sur-
face in the continuity equation needs further interpolation.
The Cartesian velocity direction is fixed and the physical
grid staggering direction may be changed to a large extent
in general body-fitted coordinates and, therefore, the
original advantages in grid staggering will be weakened. On
the other hand, the choice of curvilinear velocity com-
ponents, covariant or contravariant velocity [6, 7], does
attenuate the drawback of adopting Cartesian velocity but
the convection terms in momentum equations will no longer
satisfy either the physical or the geometric conservation law
form [8], since the linear momentum is conserved along a
straight line not a curved line. The deterioration of conser-
vation law form may cause numerical difficulties in the
finite-volume formulation. Furthermore, it needs more
mathematical manipulations and computational efforts to
extend the staggered grid applied in advanced multigrid or
unstructured grid methods.

The numerical difficulties due to the different computa-
tional positions of velocity components in the staggered grid
can be avoided il the collocated or the ALE grid is adopted
in complex geometries. In the collocated grid, all dependent
variables are defined at the computational grid node and
only one set of grid relations needs to be considered.
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However, as mentioned above, a momentum interpolation
must be adopted to eliminate the checkerboard pressure
field in the pressure correction procedure. Unfortunately, in
this momentum interpolation, the velocities satisfying the
momentum equation do not simultaneously satisfy the con-
tinuity equation. The total mass conservation may not be
satisfied, although this discrepancy will be small in a refined
grid. Meanwhile, a special treatment for pressure boundary
condition must be considered, since the calculated pressure
is also defined on the boundaries and will influence the fluid
flow solution. Recently, Sotiropoulos and Abdallah [9]
derived a new computational procedure using the
collocated grid system such that the compatibility condition
for the Poisson-Neumann problem will be automatically
satisfied. However, the discrete continuity equation must be
maodifted by adding an artificial source term. Similar treat-
.ment was also conducted by ELee and Tzong [10] in their
APPLE or NAPPLE algorithm. In the ALE grid, pressure
is defined at the computational node (scalar point} and all
velocity components are located at the cell center (vector
paint). This grid arrangement can be regarded as a partially
staggered grid, which is a compromise between the
staggered and collocated grids, and the aforementioned
individual inconveniences of the staggered and cellocated
grids may be alleviated. In fact, the ALE grid will be reduced
to the staggered grid in the one-dimensiona!l fluid flow case
and to the collocated grid in the constant pressure situation.

Effects of grid staggering have been systematically studied
by Shih et al. [11] who evaluated the performances of the
above three grid systems and their modifications by com-
paring the individual shoricomings in 11 numerical and
programming aspects. They showed that the ALE gnid
scheme is the best one in terms of “overall performance.”
However, they solved the derived pressure Poisson equation
instead of the pressure correction equation and oscillatory
pressure may subsequently occur as a numerical short-
coming. In order to eliminate the checkerboard pressure
ficld in the ALE grid, Hwang [4] proposed a split velocity
concept by using the pressure correction procedure in
Cartesian coordinates. Using this concept, the velocity
component in the X-direction, for instance, was split to
north and south parts, according to the related pressure
gradient effects across the control surface of the continuity
equation. The split north or south velocity parts will con-
tribute the mass fluxes on the east or west side of different
but adjacent continuity control volumes. In this manner, the
oscillatory pressure ficld was prevented and the total mass
conservation was also satisfied. Hwang [4] also directly
compared the performances of different grid sytems and he
conciuded that the required number of iterations for a

converged solution for the ALE grid was competitive with’

that for the staggered grid.
The aim of this paper is to extend the split velocity con-
cept for Cartesian coordinates to body-fitted coordinates.
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Contrary to previous derivations [3, 5, 7-9], coordinate
transformation is not necessary; that is, the cumbersome
geometric matrix of this partially staggered grid can be
avoided. The physical volume, surface area, and other
geometric quantities are directly derived in the physical
plane. The Cartesian velocity vector is selected to be the
dependent vanable. The convection term is considered by
its physical meaning as the projection of mass flux on the
control surface. Diffusion terms and all quantities involving
spatial gradients are represented by the nodal values by
means of the divergence theorem [12]. Split velocities are
derived so that the total mass flux is conserved, and the
resulting flow solution is independent of the reference
pressure level, Three typical flow situations were studied:
flow in a gradual expansion duct, flow in a double rec-
tangular bent channel, and natural convection in concentric
and eccentric annuli. They were calculated to find the
general performances of the present numerical scheme.
Comparisons with other numerical results or experimental
data were also performed. The calculated resuits show no
oscillatory pressure field in the flow solutions. Reasonable
agreements with other theoretical analyses or experimental
data are also obtained. All the calculations and derivations
in this paper are confined to structured two-dimensional
grids; however, the present formulation can be easily
extended to unstructured grid versions, since no coordinate
transformation was needed.

2, MATHEMATICAL FORMULATION

2.1. Governing Equations

Consider the steady, laminar, incompressible Navier—
Stokes equations expressed in the following generalized
vector form:

V‘(PV¢’F¢V¢]=S¢, (1)

where V is the velocity vector and /7 is the diffusion trans-
port coefficient for variable ¢. The terms in the LHS of
Eq. (1) denote the convective transport term (o V¢) and dif-
fusion transport term (~ " Vg); S, is the remaining terms
subtracted by convective and diffusive contribution and can
be regarded as source term. Variable ¢ in Eq. (1} can be
replaced by a physical guantity 1o represent its corre-
sponding transport equation. If ¢ is replaced by one, then
Eq. (1) represents the continuity equation, where both I,
and S, vanish. For the X-direction momentum equation, ¢
in Eq. (!} can be substituted by the X-direction velocity
component U; the diffusion transport coefficient and source
term will be laminar viscosity (u) and the X-direction
pressure gradient (—dP/3X), respectively. Other transport
equations can be determined in the same way, and Eq. (1)
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will be referenced if necessary. In the pressute correction
procedure, the continuity equation, instead of the explicit
pressure governing e¢quation, is solved to obtain the
pressure distribution. However, pressure does not explicitly
appear in the continuity equation and a relation between
the corrected pressure and the velocity figld must be derived.
The essential parts of the present method is to derive such
a relation and to climinate the checkerboard pressure field
preoduced by the standard pressure correction scheme [14]
applied to the ALE grid system.

2.2. Grid System

As shown in Fig. 1, the pressure and other scalar
dependent variables are defined at the computational grid
node designated as the scalar point, and all the velocity
components at the cell center which is designated as the
vector point, since the velocity belongs to one of the vector
quantities. In the present formulation, the derivation and
calculated examples are confined to two dimensions to
emphasize the essential ideas of this scheme, although the
extension to three dimensions is quite straightforward. In
Fig, 1, the location index (4, j) in logic space is also shown
to represent the structured grid relation; however, this two-
dimensional location index is not necessary, since the pre-
sent derivation involves no coordinate transformation. The
scalar points (X, ;, ¥, ;) and the vector points (X7, Y7 )
are related as

X;jj=0.25*{X,.‘jﬁ,+X,1,.+X,A,U+X,?u_1}

{2)
Yl;,j:O'ZS*(Yi,j—l + Yi.j+ Yi—l,j+ Yi—l,j—l)

scalar point

| ]
1. vector point

7 C.V. for scalar point

Y| CV. for vector point

FIG. 1. Grid relation and control volumes in the ALE grid.
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which implicitly defines the control volume of the vector
point {7, j) to be the quadrilateral with the four scalar points
(i, j=—1), i, ) (i1, ), and {i—1, j— 1) as its vertices.
This vector point control velume will be denoted the vector
cell for convenience. The control volume for the dependent
scalar variables in our ALE grid system is also shown in
Fig. 1 and wiil be referred to as the scalar cell. The scalar cell
is constructed by eight vertices including the four neigh-
boring vector points and the four midpoints of the vector
cell faces of (i+1,/), (G+1,j+1), (4 j+1), and (i, /).
Therefore, there are eight controi faces for the scalar cell
in contrast to the vector cell, which only consists of four
control faces.

Using the grid system, the momentum equation is applied
at a vector point and integrated over the vector cell. The
continuity and energy equations (if neceded) are applied at a
scalar point and integrated over the scalar cell to form the
finite difference equations. As mentioned above, no coor-
dinate transformation is necessary, and the physical volume
and surface area vector for the finite-volume formulation
are directly derived from geometric relations;

Vol =0.5%[(X;— X,)(Y, — Y} — (X, — X, 0¥, — ¥>)

(X =X NY;—Y)— (- XY - Y] (3)
for the volume of the quadrilateral enclosed by vertices 1, 2,
3, and 4 in counterclockwise order as shown in Fig. 2. The
surface area vector (normal vector) from point 1 to point 2
in Fig. 2 may be derived as

AL=(—-TY)i—(X,—X))j (4)
The volume of the scalar cell will be the summation of those
for four quadrilaterals as shown in Fig. 1. Furthermore, it
should be noted that the grid arrangement in the present
method is different from the original form of the ALE
method {127, where the velocity components were defined
at grid nodes and the pressure at cell centers.

Volume=0.5*T(X3-X2){Y1-Y2)—(X1-X2)(r3-Y2)
(X1 —Ha)(¥3-Y4) - (X3-Xa)(Y1-Y4)]

Area(1-2)={Y2-Y1)i-(X2-X1)]

FIG. 2. Representative control volume for geometric quantities.



ARBITRARY DOMAIN VELOCITY ANALYSES

2.3. General Difference Procedure

Using the finite-volume procedure, Eq. (1) is integrated
over its control volume to deduce the corresponding finite
difference equation at the specific computational location.
Foilowing the divergence theorem, the LHS of Eq. (1)
becomes

j V-(pV¢—F¢V¢)dV=J- (pV—1,V4)-dA,. (5)

(474 o3

The finite difference equation can be obtained if Eq. (5) is
further approximated as

[ (pV—T,Y8)-dA,~ T (pV8—~T, V), A,. (6)

where subscript # denotes the control surface index, which
must be counted over all control faces. For any specific face,
Eq. (6) contains a convective and a diffusive contribution to
the total flux across the control surface. The convective flux
can be interpreted by its physical meaning as carrying the
quantity ¢ by mass flow rate (p V) across the control face.
Consider the face 1-2 in Fig. 2 and the area vector in
Eq. (4); the convective flux will be

(pv¢)n 'An= qusn
C,=plU (Y~ Y )~V (X,—X))],

(7a)
(7b)

where C,, is the mass flow rate across the face. Subscript n
now denotes the face from point | to point 2 in Fig. 2,
and U, V are the velocity components in the X- and
Y-directions, respectively, Equation (7b) for the mass flux
can be verified to satisfy the geometric conservation law,
since the sum of the mass fluxes on all the control surfaces
will vanish in the constant velocity field [8]. The diffusion
flux in Eq. (6) can be approximated by the simple formulas

F15]:
(L4 V), Ar=D(¢y—¢.)
Dy = (Lg)n Usa- A/ (Boa 152}

In Fig. 2, the diffusion flux across the face 1-2 will be

(8a)
(8b)

LY~ XN, =Y ) - (Y, — Y )X, — X))
(X, — X P +(Y,— ¥,)*]

D, =(I),
(8¢c)
The total flux through the control surface 1-2 in Fig. 2 can

then be expressed by combining the convective and diffusive
contributions [16],

Fo=D, f(C./D, ) $s—ba) + Cothups (9a)
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where ¢, is the upwind value of ¢,

Gup=0.5*[($,+u) + (4. — ¢5) C,./IC,11, (9b)
and f( ) is the scheme function [14] with the forms
center differences,  f(P)=1—0.5* |P|
upwind, fiP)=1
(9¢)
hybrid, f(P)=Max(0,1—-0.5*|P})
power law, f(P)=Max(0, (1 - 0.1* [P|)®)

with the local cell Peclet number, P = C, /D, . In the present
study, the power law scheme is adopted, since it has been
proven to be more accurate and stable in one dimension
[14] for all cell Peclet numbers.

The volume integration of the source term in Eq. (1) can
be treated in the same way if it contains spatial derivatives.
For example, the source term in the X-direction equation
involves the partial derivative of pressure with respect to
X(éP/0X), and its volume integration can be expressed as

&P .
L (ﬁ) dV=LsP1-dA. (10)
The finite difference expression can be obtained,
[ Pi-dA-Y P4, (11)

where A, is the X-direction component of surface vector
A,. For the surface 1-2 in Fig. 2, the pressure gradient
contribution will be P,(¥,— Y,).

Contributions of other control faces in Fig. 2 may also be
accounted for in the same way as face 1-2, if the node
numbering order is kept counterclockwise.

2.4. Discretization of the Momentum Equations

The discretized momentum equation at specific vector
point (i, j) can be derived by integrating over the vector cell
in Fig. 1. Using the general difference procedure described
in Eqs. (5)-{11), the difference equation can be written on
five-point form:

for the X-direction component,

apUp=Za,,bUnb+S“, {123-)
nb
for the ¥-direction component,
a,V,=3 a,Vu+8° {12b)

nh
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with

ap=za,,b, (IZC)
nk

where the subscript p denotes the vector point index (7, j)
and nb is the neighboring E, W, N, and § point; ie, E
denotes the east vector point ({41, f). It is noted that
Eq.(12a} and Eq. (12b) only differ in the source term,
because the control volume for U/ and V is the same. The
vector cell face velocity in Eq. (7b) can be interpolated from
its adjacent values. Therefore, the influence coefficients a,,
will be related to the convective and diffusive flux,

C 5
ag= D, Max [0, (1 0.1*|D—EL) :|+Max{0, —Cg)

£

{13a)
with
Cg=0«5*ﬂ*[(Ui+1,j+Ur‘.j){Yr‘,j_Y!‘—lJ)
__(V£+l.j+Vi.j)(Xi,j_Xi—l,j)]
I:[(X:')H,j“X!i).j)(Yi,j_Yi,j—l) :l
— (Y - YO NY Xl
L= X+ (Y~ Y1 )]
(13¢)

(13b)

D= (r¢)£

for the east face. The other influence coefficients can be
found in a similar fashion. In Eq. (13a), the power scheme
was employed. Other schemes can be used just by modifying
Eq. (13a) by the appropriate function described in Eq. (9¢).
The source terms S and §"in Eq. (12} can be determined
if the pressure distribution along the edge of the vector cell
is specified. In the present calculation, a linear distribution
between two nodal pressures was assumed, and the resulting
boundary pressure will be
Pe=05%P,,+P,, ) (14)
for east face. Therefore, §* and S can be found, if the over-
all contributions on the control surfaces are considered:

S“=B“NP;,j+EL;VPr'—LJ'*'E;P*"W’I +BuEPi’j_l (132)
and
S"=5"NP!j+bWP,_1,,~‘+bst71.j—l +51’PU_1 (15b)
with
Biy=—05%Y,_,,— Y, )
Biy=—05%(Y,_,,_,—Y,)) (15¢)

S o
mE e
I
[
o=
z®

=—bY,

YAO-HSIN HWANG

and

By =0.5%X, 1 ;= X,;0)

bjw=0'5j(Xi—l,j—l_Xf,j) (15d)

v
s

vo__ v
E— _bW‘

It can easily be verified that the sum of all pressure
influence coefficients (5%, and 5%,) in Eq. (15) will vanish.
This implies that the difference equation and the resulting
momentum equation will be independent of the reference
pressure level, and the geometric conservation law for
pressure gradient terms holds [8]. This is an important
requirement of physical consistency in tncompressible flow
calculations.

2.5. The Split Velocity Concept

The velocity at a vector point can be determined from the
discretized momentum equation (12), and this velocity field
must also satisfy the continuity equation. Combining the
source terms in Eq. (15) for the momentum equations, the
X-direction difference momentum equation (12aj can be
rearranged as

Up:‘ﬁp+b£1‘\lpi,j+bll‘/VPi71,j+bng——l,j—l+b';£Pi.j—l

(16a)
with
U,= (2 Ay U,,,,) / a, (16b)
nb
b, =b"Ja,, (16¢c)

where U , can be regarded as the pseudo-velocity of U,
which accounts for all terms in the RHS of the momentum
difference equation, except the pressure gradient. The
Y-direction difference equation can be handled in the same
manner and, without loss of generality, will not be described
here. Consider the vector cell at a specific location with node
index (i, j) shown in Fig. 3. Since the vector cell is also
composed in part by the four scalar cells (i, j—1), (i, /),
(i—1,/), and (i—1, j—1) in our ALE grid system, the
velocity components U,, U, U, and U, in Fig. 3 will con-
tribute to the mass flux through the control surfaces of those
scalar cells. For example, U, and U, are two of the face
velocities of scalar cell (4, j), whereas U and U, will affect
the scaiar cell (4, j— 1) etc. If all the scalar cell face velocities
are taken to be the same as the vector point velocity U in
Fig. 3, then a linear interpolation between the adjacent vec-
tor point velocities prevails. A checkerboard pressure fieid
may occur, although the velocity field from the discretized
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FIG. 3. Split velocities in vector cell,

momentum eguations will fulfill the conservation of total
mass flow rate [1]. However, the main purpose of this
paper is to develop a pressure correction procedure without
pressure wiggles, which calls for special treatment of the
split velocities (U,, U,, U, and U,). As can be seen from
Eq. {16), the vector point velocity will be influenced by four
neighboring pressure values which implies that the pressure
gradient was evaluated at the vector point; however, the
split velocity U, should depend more on the pressure P, ;
and P, , ;thanon P,;_, and P,_, ;_,, since the pressure
gradient for a scalar cell face velocity should be evaluated at
the midpoint of the grid line connecting the scalar points
(i, j) and (i— 1, j), point BN in Fig. 3, for scalar cell (i, j).
In fact, the influences of P;;_, and P,_, ,_, vanish in
Cartesian coordinates [4], and the split velocities U, and
U, take the following form:

U, =0, +2b5,P ;+20% P
U=0,+20%P, |, +2b%P,,_,.

However, the above split process must be modified in
arbitrary grid coerdinates, because the split velocity may
depend on the reference pressure level and hence violate the
physical consistency in incompressible flow calculations.
For this reason, we propose a one-parameter split velocity
group,

U,=0,+264 P, ,+2b%,P, | ;—2b%+2%) P, (173)
U=0,+204P,_\;_ +2b%P,,_,—2(b%+2b%) P,
(17b)

where P, may be regarded as the grid-corrected pressure if
the grid coordinate is not orthogonal. Prevailing a further
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observation on grid-corrected pressure and the physical
meaning of pressure influence coefficients (4},) in Eq. (13),
one may find that P, will act on the line from BW to BE in
Fig. 3 to influence the split velocities U, and U/,. Therefore,
the grid-corrected pressure P, may be taken to be the vector
point pressure,

P,=025%P,;+P,_ 1 ;+Pi_1, +P, ;) (18)
as the arithmetic average of adjacent nodal pressure.
Consequently, the resuiting split velocities will be

Uy=0,+2b% P, ;+ 26, P, ,—0.5%(b% +2b%,)

X(P i+ Pioyj+ Py ot P 0) (19a)
U=0,+2b4P;_1 ;1 +2b%P, ;. —05%(b%+2b%)
X (P i+ P j+ P ;o4 Py i) (19b)

Similar expressions for the split velocities U, and U, can
also be obtained:
U,=U,+2b%P, ,+2b%P, ;_—0.5%b% +2b})
X (P + Py + P o+ P y) (19¢)
U= O, +20%P,_ ; \+2b5,P,_, ;—0.5%(b%+ 28%,)
X(P;+ Py ;4P i+ Py (19d)

In our grid system described in Section 2.2, the geometric
relation in Fig. 3 cleatly reveals that

ISUED SPED SIS Sk 0.5%(YE¥ —Y5%),  (20)
The split velocity in Eq. (19) also satisfies the relation
U,+U,=2U,. (21)

Therefore, the total mass flux in the original vector point
velocity field s kept unchanged as in the split velocity field,
since the condition

U (Y3 — Y5 = U (Y5 —Y? )+ U(YE,— Y55) (22a)

holds which follows immediately from Egs. (20) and (21).
Equality of the mass flow rate between the split velocities
and the vector point velocity on the EW line is also
observed, since the following equation is satisfied:

Up(yBE_ YBW)= Ug( YBE _ Y:-)'j)’i' Uw(Yzj_ YBW).
(22b)

As for the Y-direction component V, the above equations
may be proven to be valid if the X-direction velocity U is
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replaced by V, and the ¥-coordinates by the X-coordinates.
Using the velocity splitting procedure in Egs. (17}-(19), the
face velocities for the scalar cells will reasonably reflect
the pressure gradient effects on the control surfaces. In the
original ALE formulation for uniform grid distribution
[12], one can prove that changes of pressure level at
neighboring points, such as E, N, W, and S, will not affect
the total mass flux across the control surfaces. There will
exist two uncoupled networks of pressure points and an
oscillatory pressure field may occur [ 1. In fact, the present
split velocity concept can be analog to the momentum
interpolation in the collocated grid (3] in orthogonal
coordinates. The mathematical and physical properties of
the split velocity concept are briefly summarized:

1. The split velocities are independent of the reference
pressure levei;

'2. The total mass flow rate in the split velocity field is
kept unchanged as in the original vector point velocity field
from discretized momentum equation;

3. A typical split velocity only depends on two adjacent
nodal pressure values in Cartesian coordinates.

2.6. Discretization of the Continuity Equation

Since there are no diffusion or source terms involved in
the continuity equation, only the discretized convection
term has to be considered. As shown in Fig, 1, the control
volume of the continuity equation (scalar cell) consists of
four quadrilaterals and eight control surfaces. All convec-
tion fluxes on these eight faces must be taken into account.
Figure 4 illustrates the X-direction face velocity more
clearly. These face velocities are also the split velocities in
the vector cell described in Section 2.5; for example, U, in

FIG. 4. Face velocities in scalar cell.
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Fig. 4 corresponds to U, in Fig. 3, and U, to U, in vector
cell (i, j). Therefore, by applying Eq. (7) with ¢=1 to all
control surfaces, the discretized continuity equation will be

CeS+ CeN + CnE+ CHW+ CwN + CwS + CsW+ CSE =0
(23)

with

Cos=p[Us (Y- Y7

i+|.,j)_ VeS(XBE_ X7, !..j)]'
If the location index for split velocities is taken into account,
then C,g can be rewritten as

Cos=plUisr, ) (YPE= Y1, )

_(V!+l,j)ﬂ (XBE_X:"-I- l,j)]! (24)
where (U;., ), and (V,,, ), represent the north split
velocities in vector cell (i + 1, §) for the X- and Y-directions,
respectively. The expressions for the other mass fluxes are
similar to that of Eq. (24).

2.7. Pressure Correction Procedure

When the discretizations of the momentum and the con-
tinuity equations have been completed, a velocity—pressure
correction relation must be employed to ensure that the
velocity field satisfies all of the discretized equations. The
pressure correction procedure of the SIMPLE [ 14] family
serves this purpose. Although any revised SIMPLE scheme
including SIMPLEC, SIMPLER, PISO, etc. can be used,
the standard SIMPLE algorithm [14] is employed in this
study for its simplicity. However, the resulting pressure
correction equation applied to this generalized ALE grid
will be different from that in the original SIMPLE aigo-
rithm, which was developed for orthogonal staggered grid
systems. The essential ingredients of the present pressure
correction process is described in the following paragraphs.

Let U* and V* denote the velocity components
calculated from the discretized momentum equations {12).
These velocities do not, in general, satisfy the discretized
continuity equation (23) with the guessed pressure field P*.
These incorrect values (I/*, V'*, P*) must be modified to
the correct ones (U, V, P) through the following equations:

U=U*+U", V=V*+1", P==P¥4+ P (25)
The fluctuating velocity components U’ and ¥’ should be
related to the pressure P'. The variables in discretized
velocity equation (16) are then substituted into Eq. (25),
and a general but rather complicated correction relation
between (U, V') and P’ can be found. The SIMPLE algo-
rithm simplifies this relation by setting the pscudo-velocity
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and pressure influence coeflicients in Eq. (16) fixed in the
correction process, that is,

U;:=b7vP:‘.j+bsz ;kl.j+bg‘P:'fl,j—l+b1‘ :',j—l‘

{26)

Similar correction relations for the split velocities in
Eq. (19) can also be found:

U,=U}+10,, U=Ux+0, (27a)
and
U,=2b5 P, ;+2b5 P, ,—0.5%(b} +2b%)
X(PL+ P+ P+ P ) (27b)

U= 265, +2BLP,,_, —0.5H (b + 25%)
XAP;+ P+ P+ P )

It is noted that the correction equations of the split
velocities and the vector point velocity in Egs. (27) and (26)
are consistent, since the condition

U,=05*(U,+ U)) (28)

automatically holds which implies that the correction for
the mass flux in the discretized continuity equation and the
momentum equations is also consistent.

The correction form for the discretized continuity equa-
tion (23) can then be found by substituting the fluctuating
split velocities into Eq. (23),

CosH Cn+Cre+ Chp+ Con+ Cls+ Clp+ Cog= -8,
{29)

with

Su=Ch+Ch+ChitClu+ Cly+Cls+CH+Ch
Cus=pl(Uis 1,;‘)” (YBE‘ Yi. 1,;'}
- (V;:-i— l,j)n (XBE_X?+ i,j)]ﬁ

where S, can be regarded as the mass flux error in the
discretized continuity equation due to the velocity field
from the discretized momentum equations. Substituting
Eq. (27b) into Eq. (29), the difference pressure correction
equation can then be found,

a4, P,=3 a,,Pry—Sn (30)

with
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ag=plL5*(b,, :,j)l;vﬁ-s*{bw 1,;)%](XBE”X?+ 1.;')

—[L5%(byy 1 Vi 0.5% (b 1, )i WY 25 Y

.
+ [1.5*(b,-+[‘j+,)%*0.5*(bf+1'j+1)fg](X:f+ Lj+ t‘XBE)
ol R RGNS PR R (JANTPIRY 1 [0 S SRS S
Anp=05%p*[(byy 0 )e+ (B, )51V Y 75)
=05 [(byyy s )it Brgr ) sUX Ly X %)
EaLUS b KUY S U MUY 5 [ St & )

i+1,+1

‘O-S*E(bwl,jﬂ)g*‘(b£+1.j+1)1v](XBN‘X?+1,j+ 1)

ap = Z Tbs
nb

where subscript #b denotes the eight neighboring points (E,
NE, N, NW, W, SW, S, and SE}; the superscripts BE and
BN refer to the boundary points in Fig. 4. All other influence
coefficient not shown in Eq. (30) can also be found by some
simple algebraic operations.

3. SOLUTION PROCEDURE

The solution procedure in the SIMPLE algorithm is
described by the foliowing operations:

1. Guess the velocity and pressure field;

2. Solve the discretized momentum equations {12} to
obtained the starred velocity field;

3. Calcuiate the split velocities from Eq. (19);

4. Solve the pressure condition equation (30) to find the
corrective pressure field P’;

5. Update the pressure field from Eq. (25) by adding P
to P*;

6. Update the velocity field by the velocity correction
equation (26);

7. Solve the other discretized equations for variable ¢
(il needed);

8 Take the corrected velocity and pressure field as a
new guessed solution and return to step 2 until the criterion
for convergence is satisfied.

The convergence criterion in this study is defined as the
summation of mass flux and the momentum flux residuals in
the whole domain divided by their reference values must be
less than a preset quantity. The reference values are decided
by the individual characteristic quantities, such as flow rate
and momentum flux in the continuity and momentum
equations, respectively.

For solution of the algebraic equations originating from
the discretized equations, the Thomas algorithm was
iteratively applied line by line to solve the five-point related
equations arising from the momentum equations, whereas a
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maodified strongly implicit procedure [17] was employed to
solve the nine-point related pressure correction equation.
The variables are underrelaxed between two successive
calculations for numerical stability. The underrelaxation
factors for velocity and pressure were assigned to be 0.8 and
0.2, respectively; they have been proven to be efficient in
Cartesian ALE grid calcuiations [4].

4. APPLICATIONS

The computational procedure was applied to solve
three test problems. They included: the fow in a gradual
expansion duct, flow in a double bent channel, and natural
convection in concentric and eccentric annuli. The
governing equations for the first two cases, which are simple
fluid flow problems, are the same as those described in
Section 2.1, whereas those for the natural convection
problem need an additional energy equation and modifica-
tions of the momentum equations, which will be discussed
in later sections. For all these test problems, the flow
geometries, boundary conditions, grid arrangements and
calculated results will be presented in the following sections,

4.1. Flow in a Gradual Expansion Duct

The gradual expansion duct flow was a test problem for
the workshop of IAHR on refined modeling [18]. Over 15
groups submitted their results on this problem and
compared with those obtained by CIff etal [19] with
finite element formulation, which was selected to be the
benchmark solution since it has been proved to be grid
independent. The geometry of this expansion duct, depicted
in Fig. 5a, depends on the value of Reynolds number. The
duct becomes longer and straighter as Re increases, and two
different Re of 10 and 100 were studied in this paper. The

ay
(0.1) | SYMMTRY PLANE (Re/3,1)
' YU(X) =1 1
INLET
OUTLET.
{0.0)
YL{X)

WALL

{Re/3.YL(Re/3))

YL{X)=[tanh{2—-30%X/Re}—tanh(2)]/2

YAO-HSIN HWANG

lower boundary (solid wall) of the duct is given by the
expression

YL{X) = [tanh(2 — 30X/Re) — tanh(2)]/2

for D<X<X,, =Rel (31)

The upper boundary (symmetry plane} is located at

YU(X)=10. The inlet boundary conditions at X =0 are

given in terms of Cartesian velocity components U, V as
U=3(Y— Y2y

V=0 for 0<¥ <10 (32)

which represents a fully developed channel velocity profile.
The outflow boundary conditions at X = Re/3 are specified
as the extrapolated values from its interior point for all
dependent variables except for the pressure, which is not
necessary due to the grid staggering effect. Figure 5b
represenis the grid system adopted for Re = 10 in the physi-
cal plane. In this grid, a 42 x 42 uniform grid mesh was used
in the following transferred plane:

¢=X; n=LY-YLX))IYUX)- YL(X)]. (33)

This grid system was also adopted for Re = 100. The con-
vergence histories for this test probiem for Re= 10 and
Re = 100 are illustrated in Figs. 6a, b. It is clear that the
oscillatory residuals are confined to the initial stage and that
the solutions converge after a certain number of iterations.
Calculated results of pressure distributions on the lower
wall, together with other numerical results, are presented in
Figs. 7a,b for Re=10 and Re =100, respectively. The
results of Demirovic and Gosman shown in Ref. [19] were
obtained by a finite difference method and those of Karki
and Patankar [207], by a finite volume procedure. As shown
in Figs. 7a, b, the present predictions agree well with the
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FIG. 5. Flow in a gradual expansion duct; (a) geometry; (b} grid system.
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FIG. 6. Convergence histories for flow in a gradual expansion duct: (a) Re = 10; (b) Re = 100.

other numerical results. The qualitative trend predicted by
the present method also follows the benchmark solution for
Re =10 near the channel inlets. Figures 8a, b show the
corresponding pressure field for Re=10 and Re =100,
respectively. It can be seen that the pressure fields are very
smooth and that the oscillatory pressure does not occur by
the present method.

42. Flow in a Double Bent Channel

The corrugated wall has been designed to be effective for
enhancing the heat transfer rate in the channel. The flow-
field will consist of the compiicated flow impingement,
separation, and reattachment characteristics in a double
bent channel. In this section, the fluid flow characteristics
are considered, and the temperature effects on the fluid
properties are assumed to be negligible. Figure 9 shows the
geometry and an 82 x 12 grid arrangement for a typical
double bent channel, where the channel step ratio is three.
This channel flow has been experimentally studied by Izumi
et al. [21] using a flow visualization technique and numeri-
cally analyzed by Amano [227, who adopted the modified
TEACH code on a 54 x 36 Cartesian grid system to cover
the computational domain. A large portion of up to

a 01

-01

—»- Cliffe et al, (FE)
A -0.8 -4 Demirevic and Gesman (FD)
= Karki and Patankar (FV)

-0.5

—— Present

-0.7 .
Q.0 0.2

60-70% of the grid points lying outside the computational
boundary have been wasted in Amano’s analysis. Therefore,
the number of effective grid points in the present study is
higher than those in Amanoc’s analysis. Figure 10 shows the
convergence history for this test problem in the present
study. Less than 70 iterations were executed to satisfy the
convergence criterion when the momentum and continuity
residual was less than 5 x 10—%; however, Amano reporied
that more than 200 iterations were needed to satisfy the con-
vergence criterion of 1.5x 1072 in his modified TEACH-
based scheme. The average central processor time for the
converged solution reported by Amano [22] was about
5 min on a UNIVAC 1100, whereas, in the present analysis,
the required CPU time was about 2 min on a HP7200
Workstation. The calculated streamwise velocity profiles,
streamlines, and pressure contour are depicted in Figs.
l1a, b, c, respectively. The streamwise velocity profile is
similar to those in Amano’s apalysis [22], and the
streamlines qualitatively agree with the observations by
Izumi er @/. [21]. Furthermore, Izumi er @/, [21] estimated
the corner pressure value at the second bend on the lower
wall to be approximately —3, and confirmed the pressure
contours in Fig. 11c of the present results.
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FIG. 7. Pressure distributions on lower wall for flow in a gradual expansion duct: {a} Re = 10; (b) Re = 100.
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FIG. 10. Convergence history for flow in a double bent channel.
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FIG. I1. Calculated results for flow in a double bent channel: (a) streamwise velocity profiles; (b} streamlines; () pressure.
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4.3, Natural Convection in Concentric and Eccentric Anmuldi

Natural convection heat transfer in horizontal annuli
involves complicated interactions between hydrodynamics
and thermal effects. Kuehn and Goldstein [23] experimen-
tally studied these phenomena by a Mach-Zehnder
interferometer to determine the temperature distributions
and local heat transfer coeflicients. Projahn etal [24]
performed a stream-vorticity formulation to numerically
analyze the fluid flow and heat transfer process. These
experimental and theoretical results are used to check the
present predictions, The schematic diagram of the problem
and the corresponding computational grid system are
depicted in Figs. 12a, b. The 62 x 22 grid was assigned to be
uniformly distributed both in THETA-r, where r is defined
as

r=(R—R)/(R*—R) 4
R* = —E,cos(THETA) + [R2 — £ sin*(THETA)]"?;

that is, r = 0 for the inner wali and r =1 for the outer wall.

As mentioned above, the governing equations described
in Section 2.1 must be modified, and an additional energy
equation must be solved to determine the temperature
distribution in this natural convection problem. If the
nondimensional variables are defined as

x=X/L; y=¥Y/L
u=UL/u; V=VLix
(35)
O=(T—-TT,—T,), p=PLpx’
. 3
RPM; Pr=v/a,
v

YAO-HSIN HWANG

where g is the acceleration of gravity, « is the thermal
diffusivity, 8 is the fluid expansion coefficient, v is the
kinematic viscosity, and L is the radius difference between
two cylinders:

(36)
In our calculation, the same geometry of Kuehn and

Goldstein [23] with L/R,=1.6 was chosen. The dimen-
sionless governing equations will be

8 u\ 8 Bu op

[6x (uuﬁax)-{—ay <W_5;)]/Pr_ -—ax+Ra 4
i du J dv dap

[l 5) v(o5) |- =5

The Boussinesq approximation in density has been assumed
in the above governing equations. The boundary conditions
are:

u=v=0, f=1 for r=0 (inner wall)
u=pv=0=0 for r=1 (outer wall) (38)
&
= ou = o =0 symmetry plane(THETA = 0° or 180°).
dy 0Oy
Three concentric and eccentric cases of (E,=0,

Ra=5x10%, (E,= ~0.625, Ra=5 x 10) and (E, = 0.652,

L O e

R

-

FIG. 12. Natural convection in concentric and eccentric annuli: (a) geometry; (b) grid system.



ARBITRARY DOMAIN VELOCITY ANALYSES

T ' 1 ! 1 ' )

® CALCULATION
— ANALYTICAL

0.0 e
g2 04 08 068

(R-RI} /(RO-RI)

1.0

FIG. 13. Caiculated and analytical temperature distributions for pure
conduction in concentric annuli.

Ra=48x10%) were calculated to directly compare the
results of Kuehn and Goldstein [23] and Projahn er al.
[24]. Before the interaction between the fluid flow and heat
transfer processes has been investigated in natural convec-
tion, a ideal conduction in concentric annuli, where the
analytical expression for the temperature distribution can
be easily obtained, was calculated by the present procedure.
As for the governing equations in Eq. (37), only the tem-
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perature transport equation without fluid flow effects was
solved. Figure 13 illustrates the dimensionless temperature
distribution of the calculated and the analytical resuits. The
calculated results agree well with the analytical distribution
in this pure conduction situation. Local equivalent conduc-
tivity on inner and outer walls of natural convection predic-
tions are represented in Figs. 14a—c, together with other
experimental and numerical results. The local equivalent
conductivity is defined as

K=hR;In(R,/R,)
K= haRa ln(Ro/RI)

for the inner wall
(39)

for the outer wall,

where h, and #,, are the local heat transfer coefficients at the
inner and outer cylinders, respectively. These heat transfer
coefficients are based on the temperature difference between
the two cylinders. It is evident from Figs. 14a—c that the pre-
sent results agree with experimental data and other numeri-
cal results, except in the region of THETA < 30° at the outer
cylinder for E,=0.652, where both numerical methods
underestimate the heat transfer rate. Physically, the drop in
heat transfer rate in this region is due to the occurrence of
the second cavity near THETA =0°. This phenomenon
implies stronger interaction between fluid flow and heat
transfler and is very critical for numerical predictions. Karki
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FIG. 14. Distributions of local equivalent conductivity for natural convection in concentric and eccentric annuli: (a) £,=0.0, Ra=5 = 10%;

(b) E,= —0.625, Ra=5x 10 (¢) £, =0.652, Ra =48 x 10°,
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FIG. 15. Isotherms and streamlines for natural convection in concentric and e¢ccentric annuli; (a) E,=00, Ra=5x10% (b) £,= —0.625,

Ra=5x10% (c) E,=0.652, Ra=48 x 10*.

and Patankar [20] speculated that the pronounced dis-
crepancies between computational and experimentat results
were due to the inconsistency between the numericaliy
and experimentally realized boundary conditions. The
isotherms and streamlines for these three cases are shown in
Figs. 15a—c. The distributions of local equivalent conduc-
tivity can be further interpolated by these figures. It is found
that the inner cylinder is always surrounded by a thermal
boundary layer, whereas the thermal boundary layer on the
bottom portion of the outer cylinder does not exist for the
case of positive eccentricity in Fig. 15c. This observation
coincides with the experimental results of Kuehn and

Goldstein [ 23]. Negative eccentricity increases the strength
of the buoyancy-induced mass flow rate between the annuli
and, on the contrary, positive eccentricity has the opposed
effect. This is why the overall heat transfer rate is increased
for negative eccentricity and decreased for positive eccen-
tricity, which was observed by Kuechn and Goldstein {23].

5. CONCLUSIONS

The present work successfully derives a numerical
method that is capable of analyzing fluid flow in irregular
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geometrigs. This method employed the ALE grid which
avoids the critical selection of velocity variables in fully
staggered grids and the assignment of a pressure boundary
condition in collocated grids. From the derivation proce-
dure and computational results several conclsions can be
drawn:

(1) Coordinate transformations arc avoided in treating
complicated boundaries and, therefore, the present method
can be easily applied to unstructured grid arrangements.

(2) The present split velocity concept was proven to
eliminate the pressure checkerboard field in body-fitted
coordinates.

(3) The present formulation is quite efficient in terms of
the convergence histories and required CPU time of test
problems.
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